名校之约2023届高三新高考考前模拟卷(五)5文理 数学

名校之约2023届高三新高考考前模拟卷(五)5文理 数学试卷答案,我们目前收集并整理关于名校之约2023届高三新高考考前模拟卷(五)5文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

名校之约2023届高三新高考考前模拟卷(五)5文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

14.设连续函数f(x)的定义域为R,已知,若函数f(x)无零点,则f(x)>0或f(x)<0恒成立.
(1)用反证法证明:“若存在实数x0,使得f(f(x0))=x0,则至少存在一个实数a,使得f(a)=a”;
(2)若f(x)=ex-$\frac{1}{{e}^{x}}$+x2-2cosx-mx-2,有且仅有一个实数x0,使得f(f(x0))=x0,求实数m的取值范围.

分析(1)不等式等价于|x|+|x-2|≤2,再利用绝对值的意义求得x的范围.
(2)由条件利用基本不等式证得结论成立.

解答解:(1)函数f(x)=|x|,∴f(x-2)=|x-2|,不等式f(x-2)≤2-f(x),
等价于|x-2|≤2-|x|,即|x|+|x-2|≤2.
|x|+|x-2|表示数轴上的x对应点到0、2的距离之和,它的最小值为2,此时,0≤x≤2,
故不等式f(x-2)≤2-f(x)的解集为[0,2].
(2)证明:$f({\frac{1}{x}-1})+f({x+1})=|{\frac{1}{x}-1}|+|{x+1}|≥|{\frac{1}{x}+x}|=\frac{1}{|x|}+|x|≥2\sqrt{|x|•|{\frac{1}{x}}|}=2$,即$f({\frac{1}{x}-1})+f({x+1})≥2$成立,
当且仅当x=±1时等号成立.

点评本题主要考查绝对值的意义,绝对值不等式的解法,基本不等式的应用,属于中档题.

未经允许不得转载:答案星辰 » 名校之约2023届高三新高考考前模拟卷(五)5文理 数学

赞 (0)