2023年普通高校招生考试冲刺压轴卷XGK(一)1文理 数学

2023年普通高校招生考试冲刺压轴卷XGK(一)1文理 数学试卷答案,我们目前收集并整理关于2023年普通高校招生考试冲刺压轴卷XGK(一)1文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023年普通高校招生考试冲刺压轴卷XGK(一)1文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

5.已知曲线C的极坐标方程是ρ=2sinθ+4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcosa}\\{y=tsina}\end{array}\right.$(t为参数)
(1)写出曲线C的参数方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|=2$\sqrt{3}$,求直线l的倾斜角a的值.

分析换元t=log2x,求得0≤t≤1,化简g(x)即为h(t)=t2+4t+2,0≤t≤1,求出对称轴t=-2,可得h(t)在[0,1]为增函数,计算即可得到所求最值.

解答解:∵f(x)=1+log2x(1≤x≤4),
∴$\left\{\begin{array}{l}{1≤x≤4}\\{1≤{x}^{2}≤4}\end{array}\right.$,即1≤x≤2,
∵f(x)=1+log2x(1≤x≤4),
g(x)=f2(x)+f(x2)=(1+log2x)2+1+2log2x,
∴g(x)=(log2x)2+4log2x+2,1≤x≤2
设t=log2x,则h(t)=t2+4t+2,0≤t≤1,
∵对称轴t=-2,h(t)在[0,1]为增函数,
则g(x)的最小值为h(0)=2,最大值为h(1)=7.

点评本题考查函数的最值的求法,注意运用换元法转化为二次函数求值域问题,注意自变量的范围,同时考查对数函数的单调性的运用,属于中档题和易错题.

未经允许不得转载:答案星辰 » 2023年普通高校招生考试冲刺压轴卷XGK(一)1文理 数学

赞 (0)