2022-2023湖南省高一阶段性诊断考试(23-355A)文理 数学试卷答案,我们目前收集并整理关于2022-2023湖南省高一阶段性诊断考试(23-355A)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

2022-2023湖南省高一阶段性诊断考试(23-355A)文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
19.有以下四个命题,其中真命题的个数为( )
①△ABC中,“A>B”是“sinA>sinB”的充要条件;
②若命题p:?x∈R,sinx≤1,则¬p:?x∈R,sinx<1;
③函数y=3sin(2x-$\frac{π}{6}$)+2的单调递减区间是[$\frac{π}{3}$+2kπ,$\frac{5}{6}$π+2kπ](k∈z);
④若函数f(x)=x2+2x+2a与g(x)=|x-1|+|x+a|有相同的最小值,则$\int_1^a{f(x)}dx$=$\frac{28}{3}$.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MP|=a+b,由余弦定理可得|AB|2=(a+b)2-ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.
解答解:设|AF|=a,|BF|=b,
连接AF、BF,
由抛物线定义,得|AF|=|AQ|,
|BF|=|BP’|
在梯形ABP’Q中,
2|MP|=|AQ|+|BP’|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos120°
=a2+b2+ab,
配方得,|AB|2=(a+b)2-ab,
又∵ab≤($\frac{a+b}{2}$)2,
∴(a+b)2-ab≥(a+b)2-$\frac{1}{4}$(a+b)2=$\frac{3}{4}$(a+b)2
得到|AB|≥$\frac{\sqrt{3}}{2}$(a+b).
∴$\frac{|PM|}{|AB|}$≤$\frac{\frac{1}{2}(a+b)}{\frac{\sqrt{3}}{2}(a+b)}$=$\frac{\sqrt{3}}{3}$,
即$\frac{|PM|}{|AB|}$的最大值为$\frac{\sqrt{3}}{3}$.
故选:A.
点评本题在抛物线中,利用定义和余弦定理求$\frac{|PM|}{|AB|}$的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.
未经允许不得转载:答案星辰 » 2022-2023湖南省高一阶段性诊断考试(23-355A)文理 数学
