安徽鼎尖教育2023届高二4月期中考试文理 数学试卷答案,我们目前收集并整理关于安徽鼎尖教育2023届高二4月期中考试文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

安徽鼎尖教育2023届高二4月期中考试文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
5.设函数f(x),g(x)的定义域分别为Df,Dg,且Df?Dg,若对于任意x∈Df,都有g(x)=f(x),则称函数g(x)为f(x)在Dg上的一个延拓函数.设f(x)=2x,x∈(-∞,0),g(x)为f(x)在R上的一个延拓函数.
(1)若g(x)是奇函数,则g(x)=$\left\{\begin{array}{l}{-{2}^{-x},x>0}\\{0,x=0}\\{{2}^{x},x<0}\end{array}\right.$;
(2)若g(x)满足:①当x≥0,g(x)=$\frac{ax+b}{x+1}$;
②值域为(0,2);
③对于任意的x1,x2∈R,且x1≠x2,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{x}-{x}_{2}}$>0,
则实数a,b的取值分别为2,1.
分析(1)先求出f(x)的表达式,通过讨论a的范围,得到f(x)的最小值的解析式,求出a的值即可;
(2)根据函数的单调性得到:[-2,+∞)⊆[2-a2,+∞),解出即可.
解答解:(1)f(x)=(x+1)2+(2a-2)(x+1)+3-2a=x2+2ax+2┉┉┉(2分)
当-a≤-5即:a≥5时,f(x)min=f(-5)=27-10a=-1,
∴a=2.8,舍去.
当-5<-a<5 即-5<a<5时,f(x)min=f(a)=-a2+2=-1,
∴a=±$\sqrt{3}$,
当-a≥5即a≤-5时,f(x)min=f(5)=27+10a=-1,
∴a=-2.8,舍去.
综上:a=±$\sqrt{3}$┉┉┉(6分)
(2)g(x)=2x+$\sqrt{x+1}$在[-1,+∞)上单调递增,
∴g(x)∈[-2,+∞).┉┉┉(8分)
在x∈R时,f(x)∈[2-a2,+∞),
由题意知:[-2,+∞)⊆[2-a2,+∞).┉┉┉(11分)
∴2-a2≤-2,
∴a≤-2或a≥2.┉┉┉(12分)
点评本题考查了二次函数的性质,考查分类讨论思想,是一道中档题.
未经允许不得转载:答案星辰 » 安徽鼎尖教育2023届高二4月期中考试文理 数学

