(新高考)高考数学二轮精品复习专题03《圆锥曲线中的中点弦问题》(原卷)

(新高考)高考数学二轮精品复*专题03《圆锥曲线中的中点弦问题》(原卷),以下展示关于(新高考)高考数学二轮精品复*专题03《圆锥曲线中的中点弦问题》(原卷)的相关内容节选,更多内容请多关注我们

(新高考)高考数学二轮精品复*专题03《圆锥曲线中的中点弦问题》(原卷)

1、专题03 圆锥曲线中的中点弦问题一、单选题 1已知椭圆的弦被点平分,那么这条弦所在的直线方程为( )ABCD2已知椭圆,过点的直线与椭圆交于两点,若点恰为弦中点,则直线斜率是( )ABCD3直线与椭圆相交于两点,若中点的横坐标为,则=( )ABCD4已知抛物线,以为中点作的弦,则这条弦所在直线的方程为( )ABCD5已知椭圆:()的右焦点为,过点的直线交椭圆于,两点.若的中点坐标为,则的方程为( )ABCD6在平面直角坐标系xOy中,F是抛物线的焦点,A、B是抛物线上两个不同的点若,则线段AB的中点到y轴的距离为( )AB1CD27过椭圆的右焦点的直线与交于,两点,若线段的中点的坐标为,则的方。

2、程为( )ABCD8已知椭圆的右焦点为F(3,0),过点F的直线交椭圆于A,B两点.若AB的中点坐标为(1,-1),则G的方程为( )ABCD9直线过点与抛物线交于两点,若恰为线段的中点,则直线的斜率为( )ABCD10已知椭圆的右焦点为,离心率,过点的直线交椭圆于两点,若中点为,则直线的斜率为( )A2BCD11已知椭圆,过M的右焦点作直线交椭圆于A,B两点,若AB中点坐标为,则椭圆M的方程为( )ABCD12已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点M,则M的坐标为( )ABCD13已知椭圆:,过点的直线交椭圆于,两点.若中点坐标为,则椭圆的离心率为( )ABCD14已知椭。

3、圆的离心率为,直线与椭圆交于两点,且线段的中点为,则直线的斜率为( )ABCD二、多选题15已知椭圆C:内一点M(1,2),直线与椭圆C交于A,B两点,且M为线段AB的中点,则下列结论正确的是( )A椭圆的焦点坐标为(2,0)、(-2,0)B椭圆C的长轴长为C直线的方程为D三、填空题16ABC的三个顶点都在抛物线E:y22x上,其中A(2,2),ABC的重心G是抛物线E的焦点,则BC边所在直线的方程为_17设AB是椭圆上的两点,点是线段AB的中点,直线AB的的方程为_.18已知椭圆,过点(4,0)的直线交椭圆于两点.若中点坐标为(2,1),则椭圆的离心率为_19已知双曲线方程是,过定点作直线交。

4、双曲线于两点,并使为的中点,则此直线方程是_20已知椭圆E:过椭圆内部点的直线交椭圆于M,N两点,且则直线MN的方程为_.21已知双曲线和点,直线经过点且与双曲线相交于、两点,当恰好为线段的中点时,的方程为_22已知抛物线为过焦点的弦,过分别作抛物线的切线,两切线交于点,设,则下列结论正确的有_若直线的斜率为-1,则弦;若直线的斜率为-1,则;点恒在平行于轴的直线上;若点是弦的中点,则23已知椭圆的半焦距为,且,若椭圆经过两点,且是圆的一条直径,则直线的方程为_.24椭圆的弦中点为,则直线的方程_25已知点P(1,2)是直线l被椭圆所截得的线段的中点,则直线l的方程是_.四、解答题26已知椭圆。

5、的左、右顶点分别为、,直线与椭圆交于、两点(1)点的坐标为,若,求直线的方程;(2)若直线过椭圆的右焦点,且点在第一象限,求、分别为直线、的斜率)的取值范围27已知动圆过点,且与直线相切()求圆心的轨迹的方程;()斜率为1的直线经过点,且直线与轨迹交于点,求线段的垂直平分线方程28已知椭圆的离心率为.(1)求椭圆的方程;(2)若直线与椭圆交于两点,且线段的中点在圆,求的值.30已知直线l与抛物线交于两点(1)若l的方程为,求;(2)若弦的中点为,求l的方程31坐标平面内的动圆与圆外切,与圆内切,设动圆的圆心的轨迹是曲线,直线.(1)求曲线的方程;(2)当点在曲线上运动时,它到直线的距离最小?最小值距离是多少?(3)一组平行于直线的直线,当它们与曲线相交时,试判断这些直线被椭圆所截得的线段的中点是否在同一条直线上,若在同一条直线上,求出该直线的方程;。

.[db:内容2]。

未经允许不得转载:答案星辰 » (新高考)高考数学二轮精品复习专题03《圆锥曲线中的中点弦问题》(原卷)

赞 (0)