2023全国高考3+3分科综合卷 QG-新教材(6六)文理 数学

2023全国高考3+3分科综合卷 QG-新教材(6六)文理 数学试卷答案,我们目前收集并整理关于2023全国高考3+3分科综合卷 QG-新教材(6六)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023全国高考3+3分科综合卷 QG-新教材(6六)文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

10.已知曲线C1:ρ=1,曲线C2:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)
(1)求C1与C2交点的坐标;
(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.

分析本题是一个等可能事件的概率,试验发生包含的事件是点数对(a,b)共有6×6对,不满足条件的事件向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线,即向量$\overrightarrow{m}$与向量$\overrightarrow{n}$共线时2a-b=0,即b=2a,共3种情况,进而根据对立事件概率减法公式,可得答案.

解答由题意知本题是一个等可能事件的概率,
试验发生包含的事件是点数对(a,b)共有6×6=36对,
满足条件的事件是向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线,即2a-b≠0,
由满足2a-b=0的事件有(1,2),(2,4),(3,6)共3种,
故向量$\overrightarrow{m}$与向量$\overrightarrow{n}$共线的概率为:$\frac{3}{36}$=$\frac{1}{12}$,
故向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线的概率P=1-$\frac{1}{12}$=$\frac{11}{12}$,
故选:C

点评本题考查的知识点是古典概型,向量平行的充要条件,是向量与概率的综合应用.

试题答案

未经允许不得转载:答案星辰 » 2023全国高考3+3分科综合卷 QG-新教材(6六)文理 数学

赞 (0)