2023年先知冲刺猜想卷 老高考(四)文理 数学

2023年先知冲刺猜想卷 老高考(四)文理 数学试卷答案,我们目前收集并整理关于2023年先知冲刺猜想卷 老高考(四)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023年先知冲刺猜想卷 老高考(四)文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

11.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为1,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为9.

分析(1)先求出f(x),g(x)的解析式,确定g(x)∈[1,2],等式[g(x)]2-mg(x)+2=0,可化为m=y+$\frac{2}{y}$,即可求实数m的最大值和最小值
(2)当x∈[0,$\frac{11π}{12}$]时,f(x)∈[-$\sqrt{2}$,1],g(-x)∈[-1,1],利用当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求a的取值范围.

解答解:(1)f(x)=$\sqrt{3}$sin(x+$\frac{π}{2}$)+sinx=$\sqrt{3}$cosx+sinx=2sin(x+$\frac{π}{3}$).
函数y=g(x)的图象上取点(x,y),关于直线x=$\frac{π}{4}$对称点的坐标为($\frac{π}{2}$-x,y),
代入f(x)=2sin(x+$\frac{π}{3}$),可得y=2sin($\frac{5π}{6}$-x),
x∈[0,$\frac{π}{2}$),则$\frac{5π}{6}$-x∈[$\frac{π}{3}$,$\frac{5π}{6}$],∴y∈[1,2],
等式[g(x)]2-mg(x)+2=0,可化为m=y+$\frac{2}{y}$,
∴y=$\sqrt{2}$时,m的最小值为2$\sqrt{2}$;m=1或2时,m的最大值为3;
(2)当x∈[0,$\frac{11π}{12}$]时,f(x)∈[-$\sqrt{2}$,1],g(-x)∈[-1,1],
∵当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,
∴a$<-\sqrt{2}$或a$>\sqrt{2}$.

点评本题考查三角函数的化简,考查函数的最值,考查恒成立,正确求出函数的解析式是关键.

未经允许不得转载:答案星辰 » 2023年先知冲刺猜想卷 老高考(四)文理 数学

赞 (0)