成都第七中学高新校区2023-2024学年九上入学考文理 数学

成都第七中学高新校区2023-2024学年九上入学考文理 数学试卷答案,我们目前收集并整理关于成都第七中学高新校区2023-2024学年九上入学考文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

成都第七中学高新校区2023-2024学年九上入学考文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

4.设点P(x,y)满足条件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$,点Q(a,b)满足ax+by≤1恒成立,其中O是原点,a≤0,b≥0,则Q点的轨迹所围成的图形的面积为(  )

A. $\frac{1}{2}$ B. 1 C. 2 D. 4

分析作出正四面体的图形,确定球的球心位置为O,说明OE是内切球的半径,运用勾股定理计算,即可得到球的体积.

解答解:如图O为正四面体ABCD的内切球的球心,正四面体的棱长为4,
所以OE为内切球的半径,设OA=OB=R,
在等边三角形BCD中,BE=$\frac{4\sqrt{3}}{3}$,
AE=$\frac{4\sqrt{6}}{3}$.
由OB2=OE2+BE2,即有R2=($\frac{4\sqrt{6}}{3}$-R)2+$\frac{16}{3}$
解得,R=$\frac{3\sqrt{6}}{4}$.OE=AE-R=$\frac{\sqrt{6}}{3}$,
则其内切球的半径是$\frac{\sqrt{6}}{3}$,
所以四面体的内切球的表面积为4π•$\frac{6}{9}$=$\frac{8π}{3}$.
故答案为:$\frac{8π}{3}$.

点评本题考查正四面体的内切球半径的求法,考查内切球的表面积的求法,正确求出半径是关键.

未经允许不得转载:答案星辰 » 成都第七中学高新校区2023-2024学年九上入学考文理 数学

赞 (0)